Aeroelasticity of Wind Turbines Blades Using Numerical Simulation
نویسندگان
چکیده
With roller coaster traditional fuel prices and ever increasing energy demand, wind energy has known significant growth over the last years. To pave the way for higher efficiency and profitability of wind turbines, advances have been made in different aspects related to this technology. One of these has been the increasing size of wind turbines, thus rendering the wind blades gigantic, lighter and more flexible whilst reducing material requirements and cost. This trend towards gigantism increases risks of aeroelastic effects including dire phe‐ nomena like dynamic stall, divergence and flutter. These phenomena are the result of the combined effects of aerodynamic, inertial and elastic forces. In this chapter, we are present‐ ing a qualitative overview followed by analytical and numerical models of these phenomena and their impacts on wind turbine blades with special emphasize on Computational Fluid Dynamics (CFD) methods. As definition suggests, modeling of aeroelastic effects require the simultaneous analysis of aerodynamic solicitations of the wind flow over the blades, their dynamic behavior and the effects on the structure. Transient modeling of each of these char‐ acteristics including fluid-structure interaction requires high level computational capacities. The use of CFD codes in the preprocessing, solving and post processing of aeroelastic prob‐ lems is the most appropriate method to merge the theory with direct aeroelastic applications and achieve required accuracy. The conservation laws of fluid motion and boundary condi‐ tions used in aeroelastic modeling will be tackled from a CFD point of view. To do so, the chapter will focus on the application of finite volume methods to solve Navier-Stokes equa‐ tions with special attention to turbulence closure and boundary condition implementation. Three aeroelastic phenomena with direct application to wind turbine blades are then stud‐ ied using the proposed methods. First, dynamic stall will be used as case study to illustrate
منابع مشابه
Design and Implementation of the Rotor Blades of Small Horizontal Axis Wind Turbine
Since the renewable resources of energy have become extremely important, especially wind energy, scientists have begun to modify the design of the wind turbine components, mainly rotor blades. Aerodynamic design considered a major research field related to power production of a small horizontal wind turbine, especially in low wind speed locations. This study displays an approach to the selectio...
متن کاملEffect of Dynamic Stall on the Aerodynamics of Vertical-Axis Wind Turbines
Accurate simulations of the aerodynamic performance of vertical-axis wind turbines pose a significant challenge for computational fluid dynamics methods. The aerodynamic interaction between the blades of the rotor and the wake that is produced by the blades requires a high-fidelity representation of the convection of vorticity within the wake. In addition, the cyclicmotion of the blades induces...
متن کاملUnsteady aerodynamic analysis of different multi mw horizontal axis offshore wind turbine blade profiles on sst-k-ω model
To indicate the best airfoil profile for different sections of a blade, five airfoils; included S8xx, FFA and AH series was studied. Among the most popular wind power blades for this application were selected, in order to find the optimum performance. Nowadays, modern wind turbines are using blades with multi airfoils at different sections. SST-K-ω model with different wind speed at large scale...
متن کاملA robust engineering approach for wind turbine blade profile aeroelastic computation
Wind turbines are important devices that extract clean energy from wind flow. The efficiency of wind turbines should be examined under various working conditions in order to estimate off-design performance. Numerous aerodynamic and structural research works have been carried out to compute aeroelastic effects on wind turbines. Most of them suffer from either the simplicity of the modelling appr...
متن کاملA robust engineering approach for wind turbine blade profile aeroelastic computation
Wind turbines are important devices that extract clean energy from wind flow. The efficiency of wind turbines should be examined under various working conditions in order to estimate off-design performance. Numerous aerodynamic and structural research works have been carried out to compute aeroelastic effects on wind turbines. Most of them suffer from either the simplicity of the modelling ...
متن کامل